Name:_____

Date:_____

Math Contest Club: Complex Variables Worksheet #1

1. Simplify or evaluate the following and express your answer in the form of $a \pm bi$:

(3+2i)(1-3i)	$\left(2-\sqrt{-4}\right)+\left(-3+\sqrt{-16}\right)$	$\left(-1+i\right)^7$
$\frac{1+2i}{3+4i} + \frac{2i-5}{5i}$	$\sqrt{\frac{-3}{2}} + \sqrt{\frac{-2}{3}}$	$\frac{(2+i)^2}{2-i} + \frac{(2-i)^2}{2+i}$
$\frac{1+i}{1-i} - \frac{1-i}{1+i}$	$\left(\sqrt{9+40i}+\sqrt{9-40i}\right)^2$	$\frac{1+2i}{3-4i} + \frac{2-i}{5i}$

2. Solve the following and express your answer in the form of $a \pm bi$:

$x^3 = 8$	(5-2i)-(x+4i)=7-6i	$x^2 = 5 - 12i$
$x^2 + (i-5)x + 12 - 5i = 0$	$x^2 - 15 + 8i = 0$	$x^2 = -3 + 4i$
$5x^2 + 4 = 0$	$z^2 - 16 - 16i\sqrt{3} = 0$	$15\sqrt{-144} - \left(3\sqrt{-i} + 1\right)^2 = 7 - 6i$

3. Find the value of $\left(-i\right)^{4n-1}$ when "n" is a negative integer.

4. If
$$\left(r+\frac{1}{r}\right)^2 = 3$$
, then find the numerical value of $r^3 + \frac{1}{r^3}$

- 5. If "z" is a complex number and \overline{z} is its conjugate, then determine the complex numbers which satisfy the equation: $5z^2 4z(\overline{z}) = (1-3i)z$
- 6. If "z" is a complex number and \overline{z} is its conjugate, then determine the value of : $z^5 (\overline{z})^5$

7. Given that one root is -2, find the other roots of $f(x) = x^3 - 4x^2 - 2x + 20$

8. Given that the two roots of a rational polynomial are 2-i and -3, determine the polynomial of the smallest degree such that f(0) = 4

9. Given that two roots of the polynomial equation: $x^6 - 6x^5 + 14x^4 - 22x^3 + 25x^2 + 8x = 60$, are 2i and 2-i, then what are the real roots?

10. Find the sum of the following: $1+2i+3i^2+4i^3+\ldots+1000i^{999}+1001i^{1000}$

11. Given the following equation, find the value of "k" if "k" and "m" are integers:

$$\left[2 - \left(-2 + i\sqrt{3}\right) - \left(-2 - i\sqrt{3}\right)\right] \left[2 + \left(-2 + i\sqrt{3}\right)^2 + \left(-2 - i\sqrt{3}\right)^2\right] \left[2 - \left(-2 + i\sqrt{3}\right)^4 - \left(-2 - i\sqrt{3}\right)^4\right] = 2^k 3^m$$

AMC 12B 2004

- 16. A function f is defined by $f(z) = i\overline{z}$, where $i = \sqrt{-1}$ and \overline{z} is the complex conjugate of z. How many values of z satisfy both |z| = 5 and f(z) = z?
 - (A) 0 (B) 1 (C) 2 (D) 4 (E) 8

AMC 12A 2007

- 18. The polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ has real coefficients, and f(2i) = f(2+i) = 0. What is a + b + c + d?
 - (A) 0 (B) 1 (C) 4 (D) 9 (E) 16

AMC 12B 2008

- 19. A function f is defined by $f(z) = (4+i)z^2 + \alpha z + \gamma$ for all complex numbers z, where α and γ are complex numbers and $i^2 = -1$. Suppose that f(1) and f(i) are both real. What is the smallest possible value of $|\alpha| + |\gamma|$?
 - (A) 1 (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$ (E) 4

AMC12B 2005

22. A sequence of complex numbers z_0, z_1, z_2, \ldots is defined by the rule

$$z_{n+1} = \frac{iz_n}{\overline{z_n}},$$

where $\overline{z_n}$ is the complex conjugate of z_n and $i^2 = -1$. Suppose that $|z_0| = 1$ and $z_{2005} = 1$. How many possible values are there for z_0 ?

(A) 1 (B) 2 (C) 4 (D) 2005 (E) 2^{2005}

AMC 12A 2002

- 24. Find the number of ordered pairs of real numbers (a, b) such that $(a + bi)^{2002} = a bi$.
 - (A) 1001 (B) 1002 (C) 2001 (D) 2002 (E) 2004

AMC12A 2008

23. The solutions of the equation $z^4 + 4z^3i - 6z^2 - 4zi - i = 0$ are the vertices of a convex polygon in the complex plane. What is the area of the polygon?

(A) $2^{\frac{5}{8}}$ (B) $2^{\frac{3}{4}}$ (C) 2 (D) $2^{\frac{5}{4}}$ (E) $2^{\frac{3}{2}}$